Implement transformation modules
The prerequisite of connecting Memgraph to a Kafka stream is to have a transformation module that can produce Cypher queries based on the received messages. We are going to implement a simple transformation that stores the properties of each message in a vertex.
note
For detailed technical information on transformation modules, check out the reference guide.
Using Docker with transformation modules​
If you are using Docker to run Memgraph, you will have to create a volume
and mount it to access the query_modules
directory. Yes, query_modules
,
because Memgraph can load transformations and query procedures from the same
directory, even from the same module. Mounting a volume can be done by
creating an empty directory modules
and executing the following command:
docker volume create --driver local --opt type=none --opt device=modules --opt o=bind modules
Now, you can start Memgraph and mount the created volume:
docker run -it --rm -v modules:/usr/lib/memgraph/query_modules -p 7687:7687 memgraph
Everything from the directory /usr/lib/memgraph/query_modules
will be
visible/editable in your mounted modules
volume and vice versa.
Through the rest of this page, /usr/lib/memgraph/query_modules
will be used to
refer to this directory. If you are using Docker, then please do the same but
with the recently created modules
directory.
Python API​
Transformations can be implemented using the Python API provided by Memgraph. If you wish to write your own transformation using the Python API, you need to have Python version 3.5.0 or above installed.
Let's create a file called transformation.py
in the
/usr/lib/memgraph/query_modules
directory. First and foremost, import the
mgp
module, which contains definitions of the public Python API provided
by Memgraph.
import mgp
Next, we have to implement the function that does the transformation. For transformations, the return type is fixed, while the parameters of the transformation can vary. The whole signature of a transformation is the following:
import mgp
@mgp.transformation
def my_transformation(context: mgp.TransCtx,
messages: mgp.Messages
) -> mgp.Record(query=str, parameters=mgp.Nullable[mgp.Map]):
...
We also marked our function as a transformation so it will be recognized by
Memgraph when the module is loaded. This was done by adding the
@mgp.transformation
decorator.
The transformations can slightly deviate from this by not receiving the
context
, just the messages
:
import mgp
@mgp.transformation
def my_transformation(messages: mgp.Messages
) -> mgp.Record(query=str, parameters=mgp.Nullable[mgp.Map]):
...
As this simple transformation won't access the vertices and edges in the
database, the context
parameter is not necessary, so we are going to use the
simpler version.
The most important part is the actual implementation of the transformation function. Before showing how it can be done, let's clarify what it is supposed to do: it receives a list of messages and returns some queries and their parameters that will be executed in Memgraph as any regular query. Right, let's see how we can do that!
We have to iterate over the messages and construct a query for each of them:
import mgp
@mgp.transformation
def my_transformation(messages: mgp.Messages
) -> mgp.Record(query=str, parameters=mgp.Nullable[mgp.Map]):
result_queries = []
for i in range(messages.total_messages()):
message = messages.message_at(i)
payload_as_str = message.payload().decode("utf-8")
result_queries.append(mgp.Record(
query="CREATE (n:MESSAGE {{timestamp: '{timestamp}', payload: '{payload}', topic: '{topic}'}})".format(
timestamp=message.timestamp(), payload=payload_as_str, topic=message.topic_name()),
parameters=None))
return result_queries
As you can see, the query is almost the same for every message, except the
three properties of the messages. This is exactly the case when the
parameters
field of the result is handy. Instead of formatting the string
with the properties, we can pass the properties as query parameters:
import mgp
@mgp.transformation
def my_transformation(messages: mgp.Messages
) -> mgp.Record(query=str, parameters=mgp.Nullable[mgp.Map]):
result_queries = []
for i in range(messages.total_messages()):
message = messages.message_at(i)
payload_as_str = message.payload().decode("utf-8")
result_queries.append(mgp.Record(
query="CREATE (n:MESSAGE {timestamp: $timestamp, payload: $payload, topic: $topic})",
parameters={"timestamp": message.timestamp(),
"payload": payload_as_str,
"topic": message.topic_name()}))
return result_queries
The $timestamp
, $payload
and $topic
are the placeholders for parameters
with the same name.
Congratulations, you just created your first transformation procedure! To ensure that Memgraph can find the transformation, let's reload the modules:
CALL mg.load_all();
And list all the available transformations:
CALL mg.transformations() YIELD *;
You should see something like the following:
+------------------------------------+
| name |
+------------------------------------+
| "transformation.my_transformation" |
+------------------------------------+
C API​
Transformations can also be implemented in C/C++ using the C API provided by Memgraph. Such modules need to be compiled to a shared library so that they can be loaded when Memgraph starts. This means that you can write the transformations in any programming language which can work with C and can be compiled to the ELF shared library format.
In this chapter, we assume that Memgraph is installed on a standard Debian or
Ubuntu machine where the necessary header file can be found under
/usr/include/memgraph
. For other installations, the header file can be found
under the include/memgraph
folder in the Memgraph installation directory.
As we already discussed how transformations work in the Python example, we won't go over the transformation itself in detail. Also, to keep the complexity of this example low, this transformation doesn't use the query parameters. Apart from that, this transformation does the same as the Python example, but written in C++17.
So let's create c_transformation.cpp
and start to populate it!
#include <exception>
#include <string>
#include <string_view>
#include "mg_procedure.h"
const std::string query_part_1{"CREATE (n:MESSAGE {timestamp: '"};
const std::string query_part_2{"', payload: '"};
const std::string query_part_3{"', topic: '"};
const std::string query_part_4{"'})"};
std::string create_query(const mgp_message &message) {
return query_part_1 + std::to_string(mgp_message_timestamp(&message)) +
query_part_2 +
std::string{mgp_message_payload(&message),
mgp_message_payload_size(&message)} +
query_part_3 + mgp_message_topic_name(&message) + query_part_4;
}
void my_c_transformation(const struct mgp_messages *messages,
const struct mgp_graph *, struct mgp_result *result,
struct mgp_memory *memory) {
auto *null_value = mgp_value_make_null(memory);
try {
auto messages_size = mgp_messages_size(messages);
for (auto i = 0; i < messages_size; ++i) {
auto *message = mgp_messages_at(messages, i);
auto query = create_query(*message);
auto *record = mgp_result_new_record(result);
auto *query_value = mgp_value_make_string(query.c_str(), memory);
auto record_inserted =
mgp_result_record_insert(record, "query", query_value) != 0;
mgp_value_destroy(query_value);
if (!record_inserted) {
mgp_result_set_error_msg(result, "Couldn't insert field");
break;
}
record_inserted =
mgp_result_record_insert(record, "parameters", null_value) != 0;
if (!record_inserted) {
mgp_result_set_error_msg(result, "Couldn't insert field");
break;
}
}
mgp_value_destroy(null_value);
} catch (const std::exception &e) {
mgp_value_destroy(null_value);
mgp_result_set_error_msg(result, e.what());
return;
}
}
Now we have to register the transformation in the mgp_init_module
function:
extern "C" int mgp_init_module(mgp_module *module, mgp_memory *memory) {
return mgp_module_add_transformation(module, "my_c_transformation",
my_c_transformation) == 0;
}
Now let's compile it:
clang++ --std=c++17 -Wall -shared -fPIC -I /home/kovi/data/memgraph/include c_transformation.cpp -o c_transformation.so
After copying the resulting c_transformation.so
to the
/usr/lib/memgraph/query_modules
directory, we can reload the modules and check
if Memgraph found our newly created transformation:
CALL mg.load_all();
Then the transformation should show up in the list of transformations:
CALL mg.transformations() YIELD *;
You should see something like this:
+----------------------------------------+
| name |
+----------------------------------------+
| "c_transformation.my_c_transformation" |
| "transformation.my_transformation" |
+----------------------------------------+
For a more detailed overview, check out the Reference guide.